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Expressions are derived for the total energy and the thermal-equilibrium single-electron
and phonon distribution functions for a defect electron-phonon system with a strong electron-
lattice distortion V; . An application of the result is made to the case of a single-phonon
mode coupled strongly to a two-level electron system.

I. INTRODUCTION

In the calculation of properties of trapped-elec-
tron defect centers in crystals one finds it neces-
ary to consider the effect of the electron-phonon
interaction upon the system both directly, through

its effect upon the energy eigenvalues and eigen-
states, and indirectly, through its effect on the
thermal averages of observables. If one assumes
the electron-phonon interaction Hamiltonian to have
the usual form, linear in the phonon coordinates,
then this interaction Hamiltonian can be divided
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rather naturally into two parts which enter into the
determination of the energy and thermal averages
in somewhat different ways. The part which is
diagonal in the electron operators arises primari-
ly from the distortion of the lattice and can produce
relatively large shifts in the energy levels of the
system and somewhat smaller shifts in the elec-
tronic distribution functions. This portion of the
interaction can be handled exactly.!'? The part of
the interaction which is nondiagonal in the electron
operators usually has a much smaller effect on the
energy levels, but its effect on the system can only
be determined through some appropriate order in
perturbation theory. The presence of the nondiago-
nal part of the interaction in the density operator
for thermal averages can, therefore, be a consid-
erable nuisance in calculations, and it is desirable
to have a criterion for determining how significant
its contribution to the thermal averaging processis
in a particular situation (and thus, e.g., whether
it might be neglected in the density operator for
some system).

For this reason, we have performed a calculation
of the changes in the average total energy and inthe
population of electron and phonon levels induced by
the interaction of a trapped-electron center with the
lattice vibrations. More specifically, expressions
have been obtained for the changes in the occupation
of phonon levels produced by the nondiagonal part
of the electron-phonon interaction, and for the
changes in the average energy and the occupation
of electron levels produced by the diagonal and non-
diagonal parts of the interactionseparately. Knowl-
edge of the magnitudes of these changes is ade-
quate to determine the importance of the diagonal
and nondiagonal parts of the electron-phonon inter-
action in the thermal averaging process in the large
majority of problems of interest. The derivation
has been performed by noting that though the changes
of the energy and thermal properties due to the non-
diagonal part of the interaction are not exactly cal-
culable, even for strong electron-phonon coupling
(i.e., large lattice distortion by the electron), they
are frequently small enough so that they may be
adequately handled in the lowest nonvanishing order
in perturbation theory. By combining an exact
treatment of the large, diagonal part of the inter-
action Hamiltonian with a perturbation treatment of
the smaller, nondiagonal part, one may then make
an accurate calculation of the energy and thermal
effects of the electron-phonon interaction even in
the strong-coupling case. The mathematical de-
tails of this approach are developed in Sec. I, and
the relations derived there are applied in Sec. III
to the study of a simple but nontrivial model com-~
prised of a single phonon mode interacting with a
two-level electron system. The numerical results

-simple description.
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obtained for this model indicate that even thoughthe
nondiagonal part of the interaction typically has a
much smaller effect on the energy eigenvalues of
the system than does the diagonal part, its effect
in the density operator can be comparable to that
of the diagonal part.

II. CALCULATION OF THERMAL EFFECTS DUE TO
ELECTRON-PHONON INTERACTION

Consider a single impurity or defect electron
trapped in a crystalline lattice that may be strong-
ly distorted by the presence of the electron. The
Hamiltonian operator H for such a system in quan-
tized form may be expressed as

H=H'+V,, H'=Hy+V,, Hy=H,+H, ,

Ha=Z)i€ia'{ai’ Hbzznwn(b;bn"’%) ) (1)

Vi=22v; qala; (0,+b}), vy real ,
i,n

Vi= 20 vynala;(0,+b)), vy =0y ,real ,
ifyn;i#f

where b} and b, are the standard raising and lower-
ing operators for the emission or absorption of a
phonon of energy w, in mode %, and a} and a; are
the creation and annihilation operators for an elec-
tron of energy €; in the state 7. The interaction V,,
linear in the phonon coordinates, whose matrix ele-
ments v; , connect an electronic state to itself is
the electron-phonon interaction operator responsi-
ble for the displacement of the centers of oscilla-
tion of the lattice ions by the electron. As stated
in the Introduction, for large v; , it is capable of
producing a strong electron-phonon coupling and of
introducing large distortions into the lattice. The
perturbation V,, also linear in its phonon coordi-
nates, contains matrix elements v;; , which connect
different electronic states. In contrast to thev; ,,
the v;;,, can ordinarily be adequately handled by
perturbation theory because they appear in the per-
turbation expansions divided by electronic energy
differences rather than, merely, by phonon ener-
gies.

We can make the effect of the interaction V,; more
transparent by defining a set of phonon operators
c;',, ¢, corresponding to the emission or absorp-
tion of phonons by lattice oscillators whose cen-
ters of oscillation are shifted by the electron. In
terms of these phonon operators and a correspond-
ing set of transformed electron operators o, a,
the physics of the strongly coupled system has a
To this end, then, let usfirst
introduce the canonical transformation generated
by the Hermitian operator®3

® =Z:igidzrﬁi=2ncn(cn°c};) ’
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where
gi=iznvi,n(cn' C;)/wn: Cn:izlvi,nﬁ}di/wn .
We set

a;=e'%d;e" %= 18, al=e*id],

b,=e'®c, e®=c,+iC,, bl=cl+iC, , @
and note that
H' =5 (a,a'; b,b")
=e'%5e' (@, 8% ¢, ct) e ®=H;+H, , (3)
where
}7&:Zi<€i‘znv%,n/w'>dmi; H,=2,w,(chca+3)-
(4)

The perturbation V,, similarly, becomes
v, =0(a,at b, 0" =@, % c, cT)e ' .

Now in the absence of any electron-phonon inter-
action, the average energy and the one-particle
electron and phonon distribution functions are

(Hp)o=Z7 Tre?H,,
(@la;)=2;' Tre*ala;
®1bn)o=Z5 Tre™bib, ,

where
Z,=Tre o .

With the total electron-phonon interaction present,
the corresponding quantities are

(Hy=Z'Tre"H ,

etc., where of course Z =Tre" The changes
produced by the electron-phonon interaction are
then

AH(B))=(H) - (Hyp)o
=((H) -(H'Y)+(H'Y -(Hpo) ,

AN, (B) E(aIaO "(a:aﬁo
=(<afai>'<5Iai>)+((‘7’;&9'(@1&”)
+((¢?Iai>"<a}ai>0) ’

AN, (B) =(b}b,) ~{b]by)o
= ((b3b,) =(ch e, ) + ({eheq) -Lenen) )
+({chen - OFbad0) s

where the quantities of interest have been expressed
as sums of several terms by introducing, in addi-
tion to the thermal averages with respect to H and
H, defined earlier, the average

(= (Tre) " Tre™ .

From (1), (3), and (4) one finds immediately that

BH

(H'Y ~(Ho)o= 2 € e-ﬁ-’/ Zye %
_Z){ €i e-BG{ Z;j e-Béj ,

(5)

(aJa,)’ -(alay)o= e/ 2 e
—e'Bei E}e-ﬂej ,

where €;=¢;-2,05,/w,

Also one sees from (2) that a} a; = 414;, so that
(aja;) -(aja;)=0 .

Finally, from (3) and (4) one concludes that
(enea)'=(rba)o -

Thus the only unknown contributions to A(H (8))
and A N, (B) are, respectively,

§(H(P)=Z"Tre™ H-2""" Tre*® H' (6a)
and
6N:(B)= Z Tre®ala, -2 Tre™™ 4]a, . (6D)
The contributions to A N, (B) are the quantity
6NS(B)= zTre®clc, -2 Tre™ clc, (6¢)

and the term (b} b,y -{c}c,y. Now, the evaluation
of this last term is tedious. Furthermore, inthe
presence of the electron the c; may more prop-
erly be thought of as the creation operators

for phonons than may the b:. The quantity

8 N¢(B) defined by Eq. (6c) will, therefore, be
considered effectively the change in the physical
phonon distribution function produced by the elec-
tron-phonon interaction. (Recall that for the elec-
tvonic distribution function, the distinction between
the states produced by & and af is, for our pur-
poses, immaterial, since afa;=a]%;.)

We now wish to derive explicit expressions for
the variations (6a)—(6¢) which are correctthrough
second order in the nondiagonal interaction V,
(and to all orders in the diagonal interaction V).
For this purpose we define the density operator

p M) =exp[-2yniala, -2,mcle,]/
Trexp [ -2yn?a} & ~Lanichc,] )

depending on the parameters (n,;), (n,), and use
p (n) to construct the expectation value

(S(x))n=Trp () S(x) (8)
for the scattering operator
S(x)=e*#' e*H | (9)

In terms of (8), expressions (6a)—(6c) become
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ni= B, 1°=Bw, x=B f
(10a)
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o) - 55| [In(5(0),]

9
5 N¢ (B)= [W 1n<5(x)>v]na= e, n°=Bw, x=8
(10b)

9
6 N, (B) = -[g;:f 1‘1(3("»"]17,;: Be, 1°=Pw, x=B.
(10c)

Expanding S(x) through second order in V,, using
the interaction representation, we obtain

S (Do~ 1+ [Fdzy fozldzza"u (21) Vy (zo)), , (11)

_ ,xH ! -xH*
where V,(x)=e**"V,e .

3ince p (n) commutes with H’, we can perform one
of the integrations in (11) and write

S Wp=1+ [ dz (x-2) (V, (2) V)Y, - (12)

Now p (1) can be factored [see (7)] into

p M =pz (M p, (n°) ,

and p, (n°) satisfies the conditions given by Bloch
and de Dominicis* which make it possible to apply

a thermal variant of Wick’s theorem?®'® to the phonon
system. Specifically, one defines the ‘“contraction”
of a pair of operators A, B containing the c,, cl

as

A'B =Trp,(n°)AB,

and deduces that for a product of field operators
A, B; one has

n
Trp, (n°)ABy- -+ B,=21Trp, (n°)A’ B,-+-Bj;--*B,,
i=1
(13)
with similar relations holding for other orienta-
tions of A relative to B;. In particular, one finds

C
e, el =Trp, %) e ct=(1-e"™)1 S »
chen=clcl=0.
We can now apply these relations to the evaluation
of (V,(z) V,),in Eq. (12). If V,is written as a
function of the @; and c¢,, then in the one-electron
case it takes the form
V%)= 2 vy palx)a;(x)
ijyn;i#j
X[c,(x)+c}(x) - 205, /w,] . (14)
One may evaluate the contractions necessary tocal-
culate.the contribution of V, in (12) by replacinga}
and @; in (14) by their expressions in terms of &

and &;, expanding the component of expli (g;-g;)]
corresponding to the nth phonon mode in a series,

AND C. A. COULTER 2

and using the property of contractions illustrated by
(13). By resumming the resulting expressions and

transforming from the &, &, to the af, a;, onethen
finds

¢, Wal)a;)] = [(©i,n=2;,n)/w04]

Xe, () el (2)al(z)a;(2)] ,
laf(z)a;(2)] cp(®)= [(0i,0=05,0)/ 0]

xed (2)e, (Wal(z)a;(2)]
e )al @) a,@)] = - (03,05, )/01 ] (15)

Xer' (x)c, (R)al(z)a;(2)]
laf(z)a; (@) () =- [(v;,0-v;,,)/ 0, ]

Xey (2)ed (x)[al(z)a,;(z)] .

By using (13)-(15) in (12) and noting that ¢, (x)
=e¢™*“nc,, one obtains the result

S)hp=1+ 25

if,nmyi#s
x{’dz (x-2)Lyj om &1°)

VijnVi,m @Mi)n

(18)

where
@1a),=Trpmate;= ei/2, e |
Ly, mmlzm°)={[e**n N (n7)
+e%n (No (17) + 1)] 6,y + F 35, , (2571°)
XF ig,m (&M} K 45 @0°)
Fijn(&n®) = wyt [(Ui,n +05,)+ W, 0- vy, 1)

x{e=#n [Ny (%) + 1] - en Ny (m9)}]

Trom)alz)a,(z)ala,
m¢ - i i 123
Ky’ Trp(m)ala;

No(n§ =(e"-1)t.

We have removed ¢ and ¢ from (12) through con-
traction and then applied (3), (4), and (7). The
function K, (z;n°) given by (17) can be calculated by
a number of procedures. "® [See also the calcula-
tion of K3, (s) in Ref. 3; then let s — - iz, fw - 17°. ]
Its value is found to be

Ky, (2m°) = PLACIECH)

X exp {- 2m <3h-mw;1"_l_-m.)z Ny (w,,) - No (n5,) } ]
m [Ny zw,,) + 1N, (zw,,)
(18)

This completes the formal solution to the prob-
lem, as expressions (10) can now be calculated by
first substituting (18) into (17) and (17) into (16)and
then taking the logarithm and differentiating and
evaluating or evaluating and differentiating as the
case may be. In the case of 6 N?(8) the differenti-
ation with respect to n‘;’ is trivial. In the case of
6 N% (B) we use the fact that
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e Ny (12)= - No )N (1) +1]
The energy 6 (H(B)) can be obtained from the slope
of the In function defined in (10). In the calculation
of 6 (H(B)) and the 6 N Z‘ (B) the summations over
phonon modes can be approximated in the usual
fashion by an integration with an appropriate phonon-
mode density, when this is convenient. The actual
evaluation of the integral(s) over z canbe performed
by numerical methods. Explicit expressions for
the integrated quantities in terms of elementary
functions can apparently be obtained only by making
various approximations.

It is interesting to note that the average value of
V, can be expressed in terms of the calculated quan-
tities in the form

ZTre*v,= 5 (H(B))
-2,€, 6N (B) -2, w, 6NE(B) .

It should also be commented that the so-called non-
radiative transition probability per unit time be-
tween electronic states ¢ and j, ® w;, (8), can be ob-
tained from the relations

Zd%@(x»,,:Z’ (d}\@i)n Wiy (x,n°)
144 (19)
w5 (B) =Im[W,, (io, Bw)] .

In Ref. 3, the w;,; (B) were calculated from the opti-
cal spectral functions by assuming that there exists
a single relatively small range of phonon frequen-
cies for which the electron-phonon interaction is
large, and that in this frequency range the approx-
imate relation

0 0 _ 40
Vigun = N3 (0i,0-05,0), Ny=-Ay

is valid. The w;,; (B) were then used to determine
the nonradiative transition rates *A,~*7T,(Cr® in
Al,0;) and T, - 3T, (V* in Al,0,) using a set of
phonon modes centered around 194 cm™l. Use of
Egs. (19) to evaluate the w;, (B) allows one toavoid

both these restrictions on the range of validity of

A
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the results. For instance, the techniques of Ref.

3 would allow one to calculate transition rates for
electronic coupling to either acoustical- o optical-
phonon modes. The methods of the present paper
make it possible to consider cases where bothtypes
of coupling appear simultaneously.

III. APPLICATION TO A DEFECT-LATTICE MODEL

Since the relations describing the thermal effects
of the electron-phonon interaction which have been
derived in Sec. II can hardly be said to yield a
transparent picture of the behavior of the system
under introduction of the electron-phonon interac-
tion, it is helpful to apply the results given there
to the actual numerical calculation of & {H(B)),
GN‘;"(ﬁ), and 6 N¢(B) for a particular system. Such
an application can also serve the purpose of illus-
trating that the nondiagonal part of the electron-
phonon interaction can usually be treated by pertur-
bation methods even in the case of strong electron-
phonon coupling. The system considered will be
one comprised of a two-level electron system in-
teracting with a single phonon mode. In Egs.(16)-
(18), the indices i and j will then take on the values
1 and 2 only, while the indices » and m can only
assume the value 1 and will, therefore, be dropped.
Furthermore, it will be assumed that the €; and b,
appearing in the Hamiltonian have been chosen so
that vy, the diagonal interaction matrix element
coupling the electronic ground state to the phonon
mode is zero. (Such a choice can always be made. )
It is then possible to express all the quantities re-
ferring to the interaction matrix elements in terms
of two parameters

S=v3/w?

(where wS is half the Stokes shift for the system)
and

A=0v1=0g -

The calculation of the derivatives necessary for
the evaluation of 6 N%(B8) and 6 N¢(B) is straight-
forward, though tedious. One finds that

inh? i

) 2 8
5N1(ﬁ)=-m£ dZ(B-Z)l

sinh (3 Bw)

+S sinhwmz[l +S—SE%(—(Z%:EZ)£)]

- 28 sinh($ Bw)

5N¥B)=-0NP) ,

. A2 8 coshw, (2 -3
SN )=~ T, 4 - e

s 1 2w w(B-2) _ ,Bw _
coshzwy, sinhw(z - ﬁ)% exp{ s e +?eﬂw - e 1]

b (20)

(21)

[% coshz 4.8 <vs'1nhz(§zw) coshw(z — 1 B)

sinh 1w
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. . _1
_ksmhzw sinhw(z - % B)>+Sz (sinhz(ézw)+

sinh ($ Bw)

X[-Ssinhzw+2 sinh(2 fw)
2
where (.L)I?‘:Ez—'gl .

Somewhat more easily, one can verify that

s sinh®({ zw) sinhw(z - 1 B

_d 22 g coshw(z -1 p) ]
6(H(ﬁ))——dﬁ cosh(éﬁwla)j dz (B-—z)’coshwm( —%B)[———#—a—sinhgﬁw +s(1+—_—Lsinh2%Bw )

+28 sinh § fw

These expressions permit one to make a straight-
forward numerical evaluation of the quantities of
interest.

Calculation of 5 (H(B)), 5N¥B), and 5 N°(B) was
carried out for a phonon frequency w of 10'* sec™!.
The electronic-transition frequency was taken to
be 10" sec™, far out in the infrared. Choosing
such a low electronic transition energy maximizes
the problems encountered in treating the nondiago-
nal interaction V, by perturbation theory, so that
the fact that V, can (as will be seen) be adequately
handled by this method here is a strong indication
that the method can be used quite successfully for
the more usual situation of electronic transitions

+30 T T T TV T
/ AN w=532cm”
+20F / \ W,=532 cm” -
/ \
// \
\
+I0- / \ b
/ \
/ ................... SV S=|
T /e \ ...........
E Opmmsommsszt Ay
© \ S=0
\
~ \
I \
-0k \ s=6 ]
] \\
~
I \
v \ .
-20f \
\
\
\
.30+ \\ -
\
\
N
-40, 1 1 1 1 1
(0] 100 200 300 400 500 600

T°K

FIG. 1. The change H’)’ —(H,), in the average energy
of the system produced by the diagonal part of the elec-
tron-phonon interaction.

sinh w,, (2 B—2z)sinhw(z - éﬁ)} exp’

2
sinh®(4zw) sinh?w(z — éﬁ))] sinh wy, (2 B-2)
sinh®(% fw) sinh®(2 fw)
) s[ezw+ew(B-z)_eBw_1]
]f expj (eBw _ 1) f ’ (22)
sinh®w(z - £ B)
S [e%® + g9 B0 _ ghu _ 1]
(e®-1) f' 9

[

in the visible or near infrared regions. S values

of 0, 1, and 6 are used to cover the range from a
vanishing to a rather large distortion of the lattice
by the electron. The off-diagonal interaction ma-
trix element v,, is somewhat arbitrarily taken to be
the same for all three S values, namely, one-half the
diagonal matrix element v, for S = 6. (If the electronic
transitionfrequency had been chosen in the near in-
frared, then v,, could have been taken equal toor some-
what greater than v, without any complications. )

Before displaying the results of calculating the
expressions given by Eqgs. (20), (22), (23), we
firstgive in Figs. 1and 2 the change producedin the
average energy and the population of the electronic
ground state by the diagonal part of the electron-
phonon interaction. These changes have been cal-
culated for the parameters mentioned earlier and
for a range of temperatures from 20 to 600 °K by
using Egs. (5). The quantities 5 (H(B)), 6N§(ﬁ),
and 6 N °(B) are then given in Figs. 3, 4, and 5,
respectively. The total change in the average en-
ergy as a consequence of the electron-phonon in-
teraction is the sum of the contributions shown in
Figs. 1and 3, and the total change in the electronic
ground-state population is the sum of the contribu-
tions shown in Figs. 2and 4. As noted earlier, the
change in the physical phonon number is essentially
given in full by 6 N°(8), shown in Fig. 5. To aidin
the interpretation of these calculated shifts, plots of
the unperturbed phonon and ground-state-electron
populations as functions of temperature are given
in Fig. 6.

Figures 2 and 4 show that from about liquid-
nitrogen temperatures upward over a wide temper-
ature interval both the diagonal and nondiagonal
parts of the electron-phonon interaction produce
quite significant variations of the average elec-
tronic ground-state population from its noninter-
acting value. (The effect of V, is of course non-
vanishing even at 0 °K since, unlike V,, this part
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1.5
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of the interaction has the ability to mix electronic
states.) It is also interesting to observe that the
contributions of V; and V, to the population change
of the ground state are of comparable size, and
thal the effect of V, is not strongly dependent on
the strength of the diagonal part V;. Presumably
the first of these characteristics is due to the fact
just mentioned that V, is capable of directly mixing
the electronic states, while V, can only alter the
behavior of the electronic ground-state population
by changing the temperature at which thermal ex-
citation out of the electronic ground state becomes
appreciable (by shifting the energy difference be-
tween the electronic states).

Figures 1 and 3 show that over the temperature
range considered the contributions of V; and V, to
the change of the average energy are also compa-
rable, with the effect of V, actually dominating in
much of the region. The comparability of these
contributions arises from two causes. The first
is peculiar to the model, and is simply due to the
fact that the choice v, =0 forces H' and H, to have
the same ground-state energy and thus the same
low-temperature averages. The second is that
only V, shifts the phonon levels, '° and though the
shift of the lowest-lying phonon levels by V, is, in
general, small compared to the shift of the elec-
tronic levels by V, (in this case approximately 15

and 3% of the latter for S=1 and 6, respectively),
the proximity of excited-phonon levels to the ground
state allows them to have arelatively greater effect
on energy averages at low temperatures. The ini-
tial rise of the curves in Figs. 1 and 3 (except for
the S=0 curve in Fig. 1) from their values at 0 °K
occurs because both V, and V,depress the energy
eigenvalues of the low-lying states relative to the
ground state, and thus cause more rapid population
of these excited states with increasing temperature.
The subsequent falling behavior of the curves is due
to this same depression of the energy levels; how-
ever, the decreased energy of the excited states
becomes more important than the accelerated pop-
ulation of these states once a certain temperature
is passed.

The change in phonon number shown in Fig. 5
again is a nonnegligible correction to the phonon

number for the noninteracting system (cf. Fig. 6).
As in the case of 3N f , the strength of the diagonal
part of the interaction has little effect on the shift
of the phonon occupation number by V,; in fact, the
S=1 curve is omitted from the figure because it is
so nearly coincident with the curve for S=0.

One point worth noting is that the curves in Figs.
1, 3, 4, and 5 all contain crossover points; and in
Fig. 5, the curves shown cross twice. In the case
of Figs. land 3, this crossingis due tothe manner,
described earlier, in which the depression of the
energy levels by the interaction initially (i.e., for
low temperatures) raises the average energy and
then subsequently brings it downagain. Presumably
the behavior of the curves in Figs. 4 and 5 is re-
lated to this effect.

Examination of the six figures shows then, that
in the model considered the statistical effects of
the diagonal and nondiagonal parts of the electron-
phonon-interaction Hamiltonian are comparable to
each other, and produce a significant alteration in
the average values calculated from a density matrix
based on the noninteracting Hamiltonian H, alone.
Because of the simple character of the model, it
is not possible to extrapolate these conclusions to
a general class of physical systems; calculations
based on the expressions derived in Sec. II are
necessary in each such case to determine the sig-
nificance of the statistical effects of the two parts
of the interaction Hamiltonian. However, the mod-
el studied here is sufficiently realistic to indicate,
on the basis of the above results, that the many
calculations done in the past in which the thermal
effects of the diagonal and/or nondiagonal parts of
the electron-phonon interaction were neglected11
should be considered as at best of semiquantitative
significance pending justification of the use of such
an approximate density operator.

Two final comments need to be made about the



2 CALCULATION OF THE ENERGY AND STEADY-STATE" " 1139

results obtained here from the application of the
general theory of Sec. II to our model. The first
one is the obvious statement that the numerical
results given may easily be adapted to other values
of X by simply noting that % appears multiplica-
tively in 6(H), 5N? and 6N,. A less obvious fact
is that the numerical results for 6 (H) and 6N‘1s for
this case of a two-level electron interacting with a
single-phonon mode can also be applied to the sit-
uation of a two-level electron interacting with an
Einstein-model lattice if one assumes that for the

phonon modes coupled to the electron the approx-
imation'?

V1g,n = 0V2,p
is adequate. In this case
2 2
S =vaz ,n/w ’
where w=w, is the Einstein frequency, and
7\2=Z"v§2'" =a?w?s

It has again been assumed that v, ,=0, all n.
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